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Abstract — The ALFA project aims at timely detection, 

tracking, classification, and intent assessment of LSS targets. The 

system relies on a heterogeneous sensor suite, including radar. 

The objective of the radar component is sector surveillance 

including target classification. Since the revisit time needs to be 

short, classification must be done with very short time-on-target. 

Based on measurements, three suitable features for classification 

of two relevant target classes, i.e., small aircraft and helicopters, 

have been developed. These features exploit the targets’ micro-

Doppler characteristics and their evolution over time. Best 

classification performance is obtained by using a combination of 

these features and by considering the variation of the features’ 

distributions depending on the signal-to-noise ratio. 

Keywords — micro-Doppler, range-Doppler, classification, 

radar. 

I. INTRODUCTION 

Around the Strait of Gibraltar the African and European 

continents come very close together; the distance varies from 

only 14 km to 44 km. This short distance is easily and quickly 

traversed by small boats or aircraft and even drones, which 

may be exploited to smuggle drugs from Morocco to the 

mainland of Europe through the south coast of Portugal or 

Spain. The current sensor systems for border control focus on 

monitoring the sea and the airspace above. These systems have 

difficulty tracking small air targets crossing the coastline and 

flying further inland due to sensor limitations, terrain features 

or buildings. In turn this makes it difficult to timely intercept 

such aircraft might they exhibit suspect behaviour. The 

Advanced Low Flying Aircraft Detection and Tracking 

(ALFA) project has been initiated to address this capability 

gap. 

ALFA is a three-year European Horizon 2020 project, 

which was initiated in 2017. The final objective of the ALFA 

system is timely detection, tracking and classification of Low, 

Small and Slow (LSS) air targets in support of existing 

surveillance systems for border control [1]. The focus is on the 

following classes of LSS targets: small (manned) aircraft and 

helicopters, hang gliders, and drones. The ALFA system 

should furthermore assess the intent of suspect air targets and 

timely provide a prediction of the landing or dropping zone, 

such that law enforcement can intercept the illicit transport. 

The ALFA system is developed for maritime border 

surveillance, but it is based on a heterogeneous sensor suite 

and should be suitable for other missions such as event 

protection or the security of critical infrastructure. 

The ALFA system is built around an open architecture 

infrastructure, see Fig. 1. This infrastructure connects the 

ALFA prediction core, sensor stations, external surveillance 

systems, (gap-filling) mobile sensors, and end-user displays. 

The ALFA sensors form a heterogeneous set including radar, 

electro-optical, and RF emitter localization components. The 

information collected by the various sensors is combined in 

the ALFA core, which performs the target classification and 

intent assessment and provides the landing site prediction. 

In this paper the focus is on the radar component of the 

ALFA system. The radar component needs to detect, track and 

classify the relevant low-flying targets. Since the targets are 

manoeuvrable it is important to maintain short revisit times. 

Consequently, the targets must be classified while using the 

standard (scanning) surveillance waveform. Thus relevant 

target features must be found that can indeed be extracted 

using very short time-on-target. Target features suitable to 

classify drones and discriminate them from birds have already 

been presented in [2]. In addition to that study, here features 

are discussed suitable for the classification of manned 

helicopters and manned fixed-wing aircraft. 

 

Fig. 1.  The high-level ALFA system architecture [1]. 

To find and evaluate potential features, measurements of 

the two target classes (i.e., helicopter and fixed-wing aircraft) 

have been performed. The measurements and some promising 

features are discussed in Section II. Subsequently, in Section 

III, the radar classification chain is explained. The 

classification results are evaluated in Section IV. Finally, 

conclusions are provided in Section V. 

 



II. TARGET FEATURES DEVELOPMENT 

A. Measurement Campaign 

Measurements of a manned helicopter and fixed-wing 

aircraft have been performed early 2018 at the seashore in The 

Netherlands. The helicopter and aircraft flew different tracks 

along the coastline offering a relevant radar sea clutter 

environment. Measurements have been conducted for 

incoming and outgoing flights, under diverse aspect angles, 

altitudes, and ranges. They are therefore representative for a 

large number of operational situations. The targets were a 

Hughes 300C helicopter and a Cessna 150 small fixed-wing 

aircraft. The helicopter has a three-bladed main rotor of 8.2 m 

diameter and a rotation rate of about 470 RPM. The fixed-

wing aircraft has a wingspan of around 10 m. Its propeller 

diameter is about 180 cm and its rotation rate is comprised 

between 2200 and 2400 RPM. 

The measurements were done with the SQUIRE radar 

developed by Thales Nederland. SQUIRE is a Frequency 

Modulated Continuous Wave (FMCW) radar [3]. During the 

measurements, typical radar surveillance waveform settings 

were used. The SQUIRE radar scanned the sector to survey in 

azimuth. The scanning speed and radar waveforms have been 

optimized to maintain good tracking capabilities over 

successive scans. This means that a short time-on-target is 

available to perform classification. Target tracks and the 

related radar video data were saved for further processing. 

 

 

Fig. 2.  Photo of the SQUIRE radar at the beach and inserted photos of the 

measured targets during the ALFA measurement campaign. 

B. Range-Doppler Representation 

In FMCW radars, range is determined by measuring 

changes in beat frequency. Such changes can also occur due to 

moving targets [4]. The ambiguity in the interpretation of the 

cause of the changes in beat frequency is referred to as range-

Doppler coupling. A consequence is that the responses of 

target parts moving at velocities higher than the unambiguous 

velocity appear in different range cells than the response of the 

target fuselage as observed in Fig. 3. 

In Fig. 3, the target fuselage position (range) is indicated 

by the black dashed line. Away from this dashed line, the 

micro-Doppler signals due to the rotating blades can be 

observed [5]. The micro-Doppler characteristics differ for the 

two types of targets considered. In order to develop the radar 

classification chain, target features should be found that 

exploit these differences. Potential features are discussed in 

the following subsections. 

C. Maximum Observable micro-Doppler Speed 

On the left of the dashed line in Fig. 3 (left), strong micro-

Doppler signals are present in an extended area. The signals 

represent the flash of one approaching helicopter blade. The 

blade tip velocity is around 200 ms
-1

. Since the applied radar 

waveform has an unambiguous velocity of around 25 ms
-1

, the 

blade signal is expected to be present in more range cells. On 

the right side of the dashed line, in Fig. 3 (right), the reflection 

of an outgoing rotating blade of the aircraft is observable. 

During the measurement, the blades were rotating at about 

2350 RPM. The tip velocity was thus around 230 ms
-1

. 

Applying the same reasoning as above, the micro-Doppler 

signal should be present in about the same number of range 

cells as for the helicopter. However, this is not the case: the 

propeller blade is a pitched blade whose reflection weakens 

with the distance to the blade centre. In addition, due to the 

blade pitch, one of the sides of the blades will reflect much 

more than the other. For an approaching aircraft at low 

elevation with a clockwise rotating blade, the outgoing blade 

presents a larger surface than the approaching blade. 

  
Fig. 3.  Range-Doppler representation of a helicopter measurement (left) and a 
fixed-wing aircraft measurement (right). The colour scale is in dB. 

D. Burst-to-Burst micro-Doppler Spectrum Uniformity 

The signal amplitude from the blades of a fixed-wing 

aircraft in a range-Doppler representation should remain 

roughly constant, as long as the aspect angle does not vary too 

much. Consequently, the micro-Doppler characteristics of a 

fixed-wing aircraft should be fairly constant from burst-to-

burst. 

For the helicopter, the situation is different: an incoming 

rotating blade will give a flash at ranges shorter than the range 

of the helicopter fuselage response, whereas the flash of 

outgoing rotating blades will be seen at longer ranges. The 

flashes of an incoming blade occur every 45 ms for a rotating 

speed of 470 RPM and a three-bladed rotor. Due to the blade 

flashes, the helicopter micro-Doppler characteristics will vary 

from burst-to-burst. 

E. Micro-Doppler Spectrum Periodicity 

Another interesting difference is the presence of 

periodicity in a single range cell, i.e., along the Doppler 

dimension, in the range-Doppler representation of the fixed-

wing aircraft measurement. This spectrum periodicity (due to 



modulation peaks) is related to the frequency of the blade 

flashes, which in turn depends on the angular velocity of the 

rotor or propeller [2]. The propeller of the fixed-wing aircraft 

rotates much faster that the helicopter’s rotor. Therefore, the 

modulation lines start appearing only for the aircraft. 

These differences in micro-Doppler characteristics can be 

exploited to determine if an air target belongs to the helicopter 

class or the fixed-wing aircraft class. The radar classification 

chain developed for the ALFA project uses these 

discriminative features to label the targets. The classification 

chain is introduced in the next section. 

III. RADAR CLASSIFICATION CHAIN 

The development of a classifier generally undergoes a 

training and a testing stage. After these stages, the operational 

classifier can be specified. In this section, the different 

components within the classification chain are explained. 

A. Classification Chain for Training and Testing 

The block diagram of the radar classification chain for 

training and testing is provided in Fig. 4. As mentioned above, 

the feature extraction and classification are based on single 

radar bursts of about 30 ms each. Several hundreds of 

measurements (bursts) of the helicopter and the fixed-wing 

aircraft have been gathered and they have been split between a 

training set and a testing set. 

 

Fig. 4.  The radar component’s training/testing classification chain. 

The preprocessing stage of the radar classification chain is 

used mainly to filter the land and the sea clutter returns present 

in the coastal environment. In the mapping stage the time-

sampled radar signals are transformed to the range-Doppler 

domain, as presented in Fig. 3. In the feature extraction stage, 

discriminative target features are investigated. In the ALFA 

radar classification chain, the three micro-Doppler features as 

discussed in Section II have been implemented: the maximum 

observed micro-Doppler speed, the micro-Doppler spectrum 

uniformity from burst-to-burst and of the micro-Doppler 

spectrum periodicity. 

Finally, a class label must be assigned to each measured 

target, based on the extracted features values. Because of its 

popularity and simplicity, a (recursive) Naïve Bayesian 

classifier is used for the radar classification chain. The 

recursive Bayesian classifier is given by: 

𝑝(𝑐/𝑍𝑘) =
𝑝(𝑧𝑘/𝑐)∙𝑝(𝑐/𝑍𝑘−1)

𝑝(𝑧𝑘/𝑍𝑘−1)
  (1) 

where 𝑝(𝑐/𝑍𝑘)  is the posterior probability on the target 

class 𝑐 ∈ {1, … , 𝐶} with 𝐶  the total number of target classes, 

given all features 𝑍𝑘 = {𝑧𝑘 , 𝑧𝑘−1, … 𝑧1}  processed so far, 

𝑝(𝑧𝑘/𝑐) is the conditional likelihood on the current feature 𝑧𝑘, 

and 𝑝(𝑧𝑘/𝑍𝑘−1) is the total likelihood of the current features 

given all previous ones. Finally, 𝑝(𝑐/𝑍0)  is the prior 

probability on each class. The training set is used to estimate 

the parameters describing the conditional class-dependent 

probability densities of the extracted features, which are 

assumed to be Gaussian densities. Possible statistical 

dependencies between the features are ignored. This 

knowledge is used during the testing and operational stages to 

determine to which class a measured target most likely 

belongs, i.e., the target class with highest posterior probability. 

By using multiple features, the classifier robustness can be 

improved. Therefore, a feature combination stage is added to 

the radar classification chain. When the feature values become 

available, the likelihoods for all classes are computed. 

Considering multiple (assumed) independent features leads to 

a situation for which not only performance improvement can 

be expected but also more confidence can be gained in the 

classifier outcome. 

B. Operational Classification Chain 

The radar classification chain can be applied to any target 

in track. At each track update, new measurements become 

available. This additional information can serve as new 

evidence to update the target classification output. The 

operational classifier chain presented in Fig. 5 makes use of 

the pre-processing, mapping and feature extraction blocks 

developed during the training and testing stages. In order to 

improve the stability of the classification output, the feature 

values are filtered scan-after-scan using a low pass filter. Then, 

the features are combined. Finally, the recursive Naïve 

Bayesian classifier can determine to which class the detected 

target belongs. 

 

Fig. 5.  The radar component’s training/testing classification chain. 

C. Features’ Dependency on SNR 

The features values depend on the available micro-Doppler 

signal-to-noise ratio (SNR). By considering this dependency 

in the features values distribution model the performance may 

be improved with respect to the situation where a mean 

distribution over the entire training set (thus independent of 

SNR) would be used. 

Fig. 6 provides histograms of the micro-Doppler spectrum 

periodicity feature for the manned helicopter and the manned 

fixed-wing aircraft classes, for different SNR values. This 

histograms represent the occurrence of feature values over the 

entire training set. The distributions originating from 

helicopters and fixed-wing aircraft appear to have different 

means at large SNR which is an indication that this feature is 

able to discriminate between targets belonging to the two 

classes. However, a large overlap between the two 



distributions exists at lower SNR, indicating that 

misclassification can be expected. 

 

Fig. 6.  Histogram for the micro-Doppler spectrum periodicity feature plotted 

for different SNR, left: SNR ≤ 20 dB, middle: 20  < SNR ≤ 30 dB, and right: 
SNR > 30 dB. 

IV. CLASSIFICATION RESULTS 

In this section, the classification results, at the end of the 

training and testing stages, are presented. These results are 

obtained considering individual bursts. It is important to note 

that an additional performance gain will be achieved when the 

classifier will be used with its operational settings: 

 The features values are filtered over time to improve 

the consistency of the classifier outcome; 

 The classification label is achieved using an iterative 

Naïve Bayesian classifier therewith combining the 

outcome of multiple bursts. 

The single-burst classification results are presented in the 

form of confusion matrices. The probability of correct 

classification Pcc is also computed. In Fig. 7, the performance 

achieved with a classifier that does not take the features’ SNR 

dependency into account is compared to the one achieved with 

a classifier that considers this dependency. The feature 

considered is the maximum observable micro-Doppler speed. 

The benefit of including the SNR dependency is clearly seen 

for this feature as a classification performance gain of nearly 

10% is achieved. 

  
Fig. 7.  Confusion matrices for single bursts for the maximum observable 

micro-Doppler speed feature for a classifier that does not take SNR into 

account (left panel) and a classifier with SNR dependency included (right 
panel). 

In Fig. 8, the classification performance including the SNR 

dependency achieved with a single feature, the micro-Doppler 

spectrum periodicity, is compared to the performance achieved 

when using all three designed micro-Doppler features. Nearly 

4% in classification performance is gained by combining the 

three micro-Doppler features. 

  
Fig. 8.  Confusion matrices for single bursts achieved with one single feature 

(left panel) and with the micro-Doppler features combined (right panel). 

V. CONCLUSIONS 

ALFA is a H2020 project with the objective of bridging 

the current capability gap of operational border surveillance 

systems regarding detection, tracking and classification of 

LSS air targets. The radar component of the ALFA system is 

used for sector surveillance including the classification of 

targets that are in track. To uphold short revisit times, only a 

short time-on-target is available for classification. Based on 

measurements, three suitable features have been developed: 

the maximum observed micro-Doppler speed, the micro-

Doppler spectrum evolution over time and the periodicity of 

the micro-Doppler spectrum. These features can be extracted 

using only short time-on-target and they can be used to 

discriminate between two relevant target classes, i.e., small 

helicopters and aircraft.  

The classification performance for single bursts is assessed. 

It is noted that an additional performance gain will be 

achieved when the classifier will be used with its operational 

settings. It is shown that best classification performance is 

obtained by combining features. In addition, the classification 

performance can be improved by considering the variation of 

the features’ distributions as function of SNR. 
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