

Project Information

MARISA Consortium

Industry

- Leonardo (IT)
- Engineering (IT)
- Airbus (FR)
- GMV (ES)
- e-GEOS (IT)
- SATWAYS (GR)
- PLATH (DE)
- Aster (IT)
- Inovaworks (PT)
- Luciad (BE)
- Polémer Mediterannée (FR)

Research

- TNO (NL)
- University of Bologna (IT)
- Laurea University (FIN)
- Fraunhofer IOSB (DE)
- INOV (PT)
- NATO CMRE (BE)

End-Users

- Hellenic MoD
- Netherlands Coastguard
- Guardia Civil
- Italian Navy
- Portuguese Navy

Project Organization

Project Objectives

1. Create Improved Situation	2. Support the practiceners along the complete lifecycle of situations at sea
3. Ease a fruit of aboration among adjacent and cross-border agencies	4. Foster a dynamic acc-system of users and providers

MARISA

...delivers a toolkit providing a suite of services

- to correlate and fuse various heterogeneous and homogeneous data and information from different sources
- to improve information exchange, situational awareness, decision-making and reaction capabilities

...supports the cooperation among different Member States and User communities

- providing networking and infrastructural services
- adopting the CISE data model as the basis for the definition of the MARISA data model

Approach and methodology

- Attention to reuse capabilities and results coming from other European programs
- Compliance with European Maritime Security Strategy and CISE Data Model
- Strong Involvement of the User Community
- Protection of Data Fusion Products based on the "need-to-share" approach
- Validation of MARISA in specific operational trials
- Two Phase Approach

MARISA MARITIME INTEGRATED SURVEILLANCE AWARENESS

A Community of End Users interested in the MARISA project has been set-up and involved in the various initiatives organized during the first year

- UC1 at LAUREA premises, Helsinki, on 27th and 28th June 2017
 - Value Proposition Canvas with Customer Jobs, Pains, Gains
 - Products and services, Pain relievers, Gain creators
- UC2 at GMV premises, Madrid, on 16th and 17th January 2018
 - MARISA Services definition
 - MARISA Trials definition & exercises during these trials

Brainstorming workshop based on User-centered design methodology User Community Meeting – Helsinki – June 2017

MARISA

User Requirements Definition

MARISA Conceptual View

- Level 1 Observation of elements in the environment
- Level 2 Comprehension of the current situation
- Level 3 Projection of Future States

Common Services

- Infrastructure Services
- Human Computer Interface
- Data Distribution Services
- Access Control Services

Overview of Level 1 Services: "Observation of elements in the environment"

- Multi Sensor Track Fusion (GMV): Fusion of track data coming from a variety of sensors (AIS Receivers and Radars) and Legacy Systems
- AIS Verification (Plath): Verification of the AIS reported positions against measurements provided by a radio locating system
- Satellite Vessel Detection (e-GEOS): Target detection by processing SAR and VHR optical imagery and ship parameters estimation
- **Density Maps (CMRE)**: Density of vessel traffic in a given geographical area extracted from AIS historic data
- Heat Maps (e-GEOS): Heat Maps showing traffic patterns extracted from satellite VHR and SAR images
- OSINT Integration (e-GEOS): Extraction and integration of maritime security and safety events from open sources platform (Global Database of Events GDELT)
- COP Fusion (AST): Fusion of surveillance pictures produced in different operational environment to generate a common operational picture without redundant objects/tracks

Overview of Level 1 Services "Observation of elements in the environment" (Cont'd)

- Twitter Services (IOSB): Analysis of tweets for language and classification algorithms to assess the risk and relevance of the tweet in the intended context domain.
- **Recognized Maritime Picture (RMP):** Analysis and correlation of all information relevant to the observed object such as track data, anomalies, incidents, risks, ...etc.
- Ship Routes (CMRE): Traffic patterns that are automatically learned from AIS data and suitably synthesized in a compact representation (routes, waypoint areas, navigational legs, stationary areas, ports, ...etc.)
- Risk Maps (NLCG): Production of risk maps for collisions, penetration in dangerous/forbidden areas analyzing historical incident, weather and sea data by using different machine learning techniques and support to SaR operations

Overview of Level 2 Services: "Analysis and comprehension of the current situation"

- Behaviour Analysis and Anomaly Detection: A set of services to detect anomalies and abnormal behaviour. Different technical approaches are used:
 - ✓ **Rule based:** built on end user's field experience
 - Dynamic Bayesian Networks (IOSB/CMRE): use of probabilistic models of the vessel traffic parameters and their situational dependencies for vessel behaviours analysis and ship-to-ship interactions
 - Geospatial Complex Event Processing (STW): Combines geospatial data analysis to infer events or patterns, to identify and analyze motion patterns of vessels that indicate an ongoing situation that needs attention
 - AI & Machine Learning (INOV): use of AI techniques and Data Mining to better detect patterns and "weak signals" patterns for analysis and prediction of abnormal tracks, movements or collective vessel behaviors.

Overview of Level 2 Services "Analysis and comprehension of the current situation« (Cont'd)

- Sea Environment Awareness (UniBO): production of detailed daily/hourly forecasts on surface currents, sea temperature, significant wave height and direction. Forecasts of field extreme conditions for users in selected areas of interest
- Satellite Behaviour Analysis (e-GEOS): vessel anomalies detected by processing and analyzing satellite VHR and SAR images
- Business Intelligence Reports (ENG): A set of analysis and reports based on managed data in support to operational assessment and decision making
- Vessel Route Extraction (IW): regular route extraction from AIS tracks and other spatiotemporal observations, allowing operators to identify recurrent behavior in vessels and the extent to which maritime traffic belongs to a given route.

Overview of Level 3 Services "Impact assessment and Prediction of future states"

- Vessel Route Analysis (IW): To fit, match and extrapolate whether a vessel route is being travelled according to nominal historic patterns, or is being abnormally deviated, in which case it will try to predict the future evolution.
- Ship prediction (CMRE): Accurate long term prediction in open seas and across sensor coverage gaps of future positions of a vessel on the basis of its AIS track.
- IVEF Threat Analysis (TNO): Analysis and assessment of an anomalous behaving object including the prediction of the object's future state such as its next position or anticipated behaviour
- **Complex Threat Assessment (ADS)**: Detection and assessment of potential threats from the combination of automated analysis capabilities using AIS, tracks from VTS/CSS systems and OSINT information, and providing rapid alerts to the user
- Mission Planning (ENG): Support in the optimal deployment of assets and graphical evaluation of an automatic optimal route vessel planning

Big Data Infrastructure in MARISA

HMI – MSA Console

Showing:

- Sea condition data from SEA service (wave height)
- Realtime vessel positions (AIS, radar)
- 3. Vessels detected by Satellite Detection service

HMI - Administration Console

			Alarms		
dministration	Console Alarms Rules	Service configuration			
Alarms					
🗑 Clear alarm list					
ТҮРЕ	DATE	TIME	GENERATED BY	Alarm details	
	2018-10-22T15:17:24.312+0000	2018-10-22T15:17:24.312+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		
VESSEL_DISAPPEARED	2018-10-22T15:17:29.188+0000	2018-10-22T15:17:29.188+0000	GCEP Abnormal Vessel Behaviour Engine - Rule	[O] Show on map \propto_{0}^{0} Share alarm	
ESSEL_LOITERING	2018-10-22T15:17:52.492+0000	2018-10-22T15:17:52.492+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		
ESSEL_DISAPPEARED	2018-10-22T15:17:55.847+0000	2018-10-22T15:17:55.847+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		85020127 5420 4050 002d 80bo2d7
'ESSEL_LOITERING	2018-10-22T15:18:00.864+0000	2018-10-22T15:18:00.864+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		d87d8
ESSEL_DISAPPEARED	2018-10-22T15:18:10.954+0000	2018-10-22T15:18:10.954+0000	GCEP Abnormal Vessel Behaviour Engine - Rule	Туре	MarisaAnomaly
ESSEL_LOITERING	2018-10-22T15:18:17.743+0000	2018-10-22T15:18:17.743+0000	GCEP Abnormal Vessel Behaviour Engine - Bayesian	Anomaly Type	vessel_loitering
'ESSEL_LOITERING	2018-10-22T15:18:17.744+0000	2018-10-22T15:18:17.744+0000	GCEP Abnormal Vessel Behaviour Engine - Bayesian	Shared	
ESSEL_LOITERING	2018-10-22T15:18:17.746+0000	2018-10-22T15:18:17.746+0000	GCEP Abnormal Vessel Behaviour Engine - Rule	Identifier Generated By	Organization
ESSEL_LOITERING	2018-10-22T15:18:17.746+0000	2018-10-22T15:18:17.746+0000	GCEP Abnormal Vessel Behaviour Engine - Rule	Identifier Legal Name	GCEP Abnormal Vessel Behaviour
ESSEL_DISAPPEARED	2018-10-22T15:18:21.175+0000	2018-10-22T15:18:21.175+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		Engine - Rule
ESSEL_DISAPPEARED	2018-10-22T15:18:32.783+0000	2018-10-22T15:18:32.783+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		
ESSEL_LOITERING	2018-10-22T15:18:36.278+0000	2018-10-22T15:18:36.278+0000	GCEP Abnormal Vessel Behaviour Engine - Bayesian		
ESSEL_LOITERING	2018-10-22T15:18:36.278+0000	2018-10-22T15:18:36.278+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		
ESSEL_DISAPPEARED	2018-10-22T15:18:42.837+0000	2018-10-22T15:18:42.837+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		
'ESSEL_LOITERING	2018-10-22T15:18:44.564+0000	2018-10-22T15:18:44.564+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		
ESSEL_DISAPPEARED	2018-10-22T15:18:53.209+0000	2018-10-22T15:18:53.209+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		
VESSEL_LOITERING	2018-10-22T15:18:59.848+0000	2018-10-22T15:18:59.848+0000	GCEP Abnormal Vessel Behaviour Engine - Bayesian		
VESSEL_LOITERING	2018-10-22T15:18:59.848+0000	2018-10-22T15:18:59.848+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		
VESSEL_DISAPPEARED	2018-10-22T15:19:03.194+0000	2018-10-22T15:19:03.194+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		
VESSEL LOITERING	2018-10-22T15:19:08.372+0000	2018-10-22T15:19:08.372+0000	GCEP Abnormal Vessel Behaviour Engine - Rule		

HMI - Administration Console

Rules of Alarm generation

Administration Console	Alarms Rules Service configuration		
	Create rule		
Dulas			
Rules	Rule type		ails
+ Create rule	[GCEP] - DF2 205 - Crossing Line or Area	•	he list.
	[GCEP] - DF2 205 - Crossing a line or area		
	entering athens harbor		
	I A label to help identify the rule		
	Evolute this area		
		-	
		×	
	The area to exclude from this rule		
	Include this geometry		
		×	
	<u></u>	^	
	The area included for this rule		
	GeoFence		
	The line of area of interest		
	Included vessels (Unique Identifiers or MMSI)	_	
		×	
	+		
	A list of vessels to include for monitoring		

Showing:

- 1. Rule creation
- 2. Service configuration

Service Configuration

Administration Console	Alarms Rules Service configuration	
Dynamic Behavior Analysis Service	The geographical area to monitor for illegal diving activities by Dynamic Bayes Network	
((0)0)		
Other service	Use this to define the geographical area that is to be monitored by the service to detect illegal diving activities.	
	The geographical areas where idling is prohibited.	
	+	
	Use this to define the geographical areas where idling is prohibited.	
	Positiones of wreckages.	
	+	
	Use this to define the positions of wreckages (only center point will be evaluated).	
	Positiones of huovs	
		<u> </u>
	Use this to define the positions of buoys (only center point will be evaluated).	
	Favourable water visibility.	
	Enable "Favourable water visibility."	
	Favourable tide conditions.	
	Enable "Favourable tide conditions." Are the tide conditions favourable for diving	
	Esucurable con state	
	Epoble "Environmente ses state "	
	Eliduic Pavourable Sed State, Is the sea state favourable for diving (e.g. Beaufort scale).	
	Stationary time definition	
	Min: 0	
	Value: 300000	
	Define the time when a vessel is stationary in ms.	

MARISA Operational Trials

Name	Output
Trial 1 – North Sea	Suspicious behaviour detection products, alerts from OSINT, risks and threat assessment, decision support products
Trial 2 – Iberian Sea	Shared situation awareness pictures, selected events, business intelligence products
Trial 3 – Strait of Bonifacio	Predicted behaviour products, possible threats and plans to coordinate the response
Trial 4 – Ionian Sea	Suspicious behaviour detection, threat assessment, predictive analysis products for suspicious vessels route, decision support and mission planning products
Trial 5 – Aegean Sea	Suspicious small and fast vessels detection, enhanced operational picture

The MARISA services are validated through the **Operational Trials**

MARISA Interacts with Legacy Systems through EUCISE 2020

MARISA Interaction with Legacy Systems – IVEF I/F

Ethical Dimensions of the MARISA Project

Ethical requirements for the MARISA solution

- technology and software
- user processes & training
- governance & business models

Ethics Compliance Check Template for MARISA deliverables

Trial Information Sheet and Consent Form for each Operational Trial

Exploitation Plan

01 Exploitation Framework	 Definition of MARISA Exploitation Potentials Definition of Individual Key Exploitable Assets
02 IPR Framework	 Definition of MARISA IPR Framework Ownership and Exploitation terms and conditions
03 Market Analysis	 Market Trends Segmentation & Target Customers Competition Analysis SWOT
04 Business Model	 CANVAS Business Model Extensions to New Data Sources Alternative Market Uptake Opportunities
05 Exploitation Plans	 Partners' Individual Exploitation Plans Joint Exploitation Paths for MARISA Toolkit

A structured process has been conceived to define Individual and Joint Exploitation paths for the MARISA toolkit

THANK YOU FOR YOU ATTENTION

www.marisaproject.eu

@EU_H2020 #H2020 @MarisaProjectEU #workshop

Francesco Cazzato MARISA Project Coordinator francesco.cazzato@leonardocompany.com